MICROTURBINES

www.microturbine.com

FUPWG Spring 2002

Omaha, NE April 17, 2002

Roman E. Grosman

Power when and where you need it.

Clean and simple.

DG: Small-Scale On-Site Generation

- Generate power where it's used
- Transparent to end-user
- Fast & easy installation & operation
- Boost capacity w/o utility costs/delays
- Ensure a high level of power quality & reliability
- Gives end-users energy cost control
- Maximize energy efficiency via CHP

- Affordable n+1 or greater reliability for critical loads
- Low maintenance and minimal parts inventory
- Multi-fuel capability
- Ultra-low emissions
- Easy scalability
- Remote dispatching
- Multi-unit operation (up to 100 units or 6 MW)
- Stand-alone and gridconnect capability

But...for DG to work, it must be safe, it must be clean, and it must be affordable

MicroTurbines: ...It Must Be Safe

- MicroTurbines should comply with:
 - UL 2200 the new generator standard
 - UL 508C power conversion equipment
 - UL 1741 static inverters
 - IEEE 929, 519
 - NFPA 37, 54, 70
- IEEE nationwide interconnection standard (pending)

MicroTurbines:

... It Must Be Clean

FUPWG Meeting April 16-17, 2002 Omaha, NE

MicroTurbines:

... It Must Be Affordable

FUPWG Meeting April 16-17, 2002 Omaha, NE

MicroTurbines: Part of the Solution Today

- DG systems can be part of the solution
 - Proven clean, safe, reliable, efficient and cost-effective
 - Well below today's toughest air quality standards
 - Reduces demand on the utility grid during peak times
 - Can be deployed in weeks, not years

- Expand the President's Energy Plan to encourage
 - Use of oilfield gases as fuel
 - Use of digester gases as fuel
 - Use of hybrid-electric technology in PUBLIC transportation

MicroTurbine Technology: Unique Design Characteristics

- Integrated system approach
- Simple, low pressure ratio, low temperature, robust design
- Multi fuel capability:
 - Natural Gas, propane, CNG/LNG, methane
 - Up to 7% sour (H₂S) gas
 - Diesel, Kerosene
 - Bio-gas
- Single moving part supported by patented air bearings
 - Eliminates the need for liquid engine lubricants
 - Reduces maintenance costs
 - Increases system life
- Air cooling of the electronics
 - Eliminates need for liquid cooling systems
- Low exhaust and acoustic emissions
 - Less than 9 ppm NOX
 - 65 dba at 10 meters

- High Reliability
- Low
 Maintenance
- Low Emissions
- Versatility of Use

MicroTurbine Technology: Inside the MicroTurbine

MicroTurbine: Performance Data and Specifications

Characteristic	Performance	
	MODEL M330	CAPSTONE 60
Output	30/28 kW Net (+/-1)	60 kW Net (+/-1)
Efficiency	26% (+/-2)	28% (+/-2)
Fuel Flow	410,000 BTU/hr - HHV	871,000 BTU/hr - HHV
Exhaust Temperature	520° F	649° F
Total Exhaust Energy	277,000 BTU/Hr	640,000 BTU/Hr
Projected O&M Costs	\$0.008/kWh	
Emissions	NOx (<9 ppmV)	
Noise level	65 dBA at 10 meters	
Voltage	400-480 VAC 3 phase, 50 or 60 Hz	
Weight	1052 LB	1340 LB
Size	74.8"h x 28.1"w x 52.9"d	80"h x 30"w x 76"d

The MicroTurbineTM is smaller in footprint and quieter than conventional generation technologies

How Do We Compare to Recip's?

Conventional GenSet

MicroTurbine

Life Resource	10, 000 to 15,000 hrs	40,000 hrs
Oil Change	Yes	No
Water Cooling	Yes	No
Ultra Low Emissions	No	Yes
Heat Recovery Capability	Limited	Yes
Paralleling Gear	Optional	Integrated
Maintenance Frequency	Monthly	Annually
Grid-Quality Power	No	Yes
Multipac Configuration	Requires optional gear	Up to 100 units
Noise Level/Vibration	Loud/Present	As low as 55dBA*/None

^{*-}With optional silencer kit

MicroTurbine Applications: Valuable Characteristics

- High Electricity to Fuel Cost Ratio
- Virtually Free Fuel
- Significant Run Time
- Avoided Capital Investment
- Low Maintenance Required
- Exhaust Heat Utilization
- Power Quality Critical
- Strict Air Quality Requirements
- Space considerations
 FUPWG Meeting

April 16-17, 2002

Omaha, NE

Applications: Power Quality and Reliability

24-unit 700kW stand-alone MultiPac system with heat recovery installed at a plastics manufacturing facility in New York

Applications: Federal and Local Government

South California Prison

Denver, CO Police Department

Presidio Trust Former Military Base Now Public Park California

City Hall in California Powered by wellhead gas

FUPWG Meeting

April 16-17, 2002

Omaha, NE

MicroTurbines: Further Developments

- Advanced MicroTurbine targets
 - 120 to 150 kW
 - 40% efficiency
 - 6 ppm NOx
- Hybrid Systems:
 - Fuel cells
 - Storage devices
 - Large generation systems

250 kW fuel cell is used to spin specially modified MicroTurbine

DG Economic Model¹

^{1.} Adapted from Arthur D. Little publication, "Distributed Generation: Understanding the Economics"

Conclusions:

- MicroTurbines provide many benefits in addition to their energy economics
- The most successful applications take advantage or these unique product attributes and features
- Energy economics serve to pay for the cost of delivering the additional benefits

FUPWG Meeting April 16-17, 2002 Omaha, NE